
Lecture X of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Based on material prepared by Andreas Lööw

Weak Memory Models

• Why synchronization?
• Atomicity!

• Visibility!

• We have used modelling languages and pseudo-code.

• Real languages (e.g., Java) have additional issues:
• Memory model – how threads interact through memory and share data.

• In this lecture:
• Rudiments of the Java Memory Model and how to program in it.

• Principles applying to concurrent programming in other languages.

Telling the truth

N. Piterman 3Principles of Concurrent Programming

• Why synchronization?
• Atomicity!

• Visibility!

• We have used modelling languages and pseudo-code.

• Real languages (e.g., Java) have additional issues:
• Memory model – how threads interact through memory and share data.

• In this lecture:
• Rudiments of the Java Memory Model and how to program in it.

• Principles applying to concurrent programming in other languages.

Telling the truth

N. Piterman 4Principles of Concurrent Programming

N. Piterman

• What are memory models?

• Why weak memory models?

• Something about the Java Memory Model (as an example of a weak memory
model)

• Programming in the JMM

Lesson’s menu

5Principles of Concurrent Programming

What are memory models?

N. Piterman 6Principles of Concurrent Programming

• As part of language semantics:
• How threads communicate through shared memory.

• What values are variable reads allowed to return?

• There are different memory models:
• Sequential Consistency – one of the “strongest” memory models. Often assumed for

pseudocode (and up to now in this course).

• Java uses Java Memory Model (JMM) – a weak memory model.

Memory Models

N. Piterman 7Principles of Concurrent Programming

int x = 0;

int y = 0;

x = 1;

y = 1;

print(y);

print(x);

Reading variables: Sequential programming

What value will this read of y return?

Obviously 1! We always get the latest value!

bool done = false; int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}

Reading variables: Concurrent programming

N. Piterman 9Principles of Concurrent Programming

What are the possible outcomes of running?
1

2

3

1

2

3

Let’s consider all possible interleavings.

666

666

666

bool done = false;

int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}

Reading variables: Concurrent programming

N. Piterman 11Principles of Concurrent Programming

1

2

3

1

2

3

res

done true

1;1;2; No output

res

done true

1;1;2; No output

res

done

666

true

1;2;1;2; Output 666

Let’s see what Java says …
Demo OutOfOrderTest.java

Some visibility guarantees in SC:

• ”Program order” always maintained
• In particular, r = 666 always before done= true in any interleaving

• No “stale” values: Always see the latest value written to any
variable

But the above guarantees not provided by all weak memory
models (e.g. JMM)!
Interleaving-based semantics is the “obvious” semantics.
Why make things more difficult? Why give up program order?
Because sequential consistency costs too much.

Reading variables: Sequential consistency (SC)

bool done = false;

int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}

You must understand the memory model in order to write correct programs.

Take home message 1

N. Piterman 14Principles of Concurrent Programming

Why weak-memory models?

N. Piterman 15Principles of Concurrent Programming

For some compiler optimizations we want to reorder writes to variables.

This does not happen in pseudocode …

Messy details …

SC problem 1: Compiler optimizations

Transformed program:

y = 2;

x = 1;

z = x + y; // x = 1, y = 2,

z = 3

SC problem 1: Compiler optimizations
• E.g., the transformation to the right

“semantics preserving” in sequential
setting if we only consider final state of
program

• Not equivalent if we can inspect
program under execution, which we can
if x and y are shared variables in a
concurrent setting

• Breaks illusion of “program order”!

Original program:

x = 1;

y = 2;

z = x + y; // x = 1, y = 2,

z = 3

Write order
swapped

Write order swapped

SC cost 2: Causes too much cache synchronization

Cost of SC not obvious with too simplified machine models:

Shared global memory

CPU CPU CPUCPU

SC cost 2: Causes too much cache

Shared global memory

Local cache

resources

CPU CPU CPUCPU

Local cache Local cache Local cache

Slightly more realistic model of today’s computers:

Large (but slow)

shared memory

Small and fast
In real

machines:

Multiple

layers of

cache!

In modern CPUs,

even a single

CPU may

execute out of

order and in

parallel …

Problem with SC:
If all CPUs are always to see latest
value, must push all writes through
to slow shared resources!

Want to keep

computations local

(avoid

communication

overhead)

• Examples:
• Out of order execution
• Compiler optimizations
• Avoid communication

• SC too expensive in many situations

• Solution to mentioned problems:
Relax some guarantees offered by SC → we get weak memory models

Weaker memory models (potentially) more performant, but more difficult to
program in

Why not SC?

Something about JMM
Example of a weak memory model

N. Piterman 22Principles of Concurrent Programming

More context: machine details

N. Piterman 23Principles of Concurrent Programming

Programmer

Java

Machine

Program in Java

memory model

Java protects us

from assembly

language and from

the machine’s

memory model.

Java compiler

developers

implement Java

memory model in

the memory model

of the underlying

machine (different

machines have

different memory

models)

• Less convenient than SC, but implementable on modern machine
architectures without too much performance loss

• There is no “right design”:

The Java memory model

• A few languages have converged to “sequential consistency for data-race-free
programs” memory models

• Java included in this family

• Reasoning principle: If there are no data races (under SC), we can assume
SC when reasoning about our program

• Important to remember definitions of data race and race conditions

SC for data-race-free programs

Def.
Two memory accesses are in a data race iff they access the same memory
location simultaneously (they are interleaved next to each other), at least one
access is a write, insufficient explicit synchronization used to protect the
accesses

Def.
A program is data-race-free iff no SC execution of the program contains a data
race

Notes:

• We quantify over all SC executions in the second

• Data-race-freedom is a “language-level” property!

Data races: slight (Java) variation

Does this program contain any data races?

bool x = false, y = false;

t1 {

if (x) y = true;

}

t2 {

if (y) x = true;

}

Definition of data race surprisingly subtle

Note that this is an “application-level” property!

I.e., for a given program p, to answer the question “is p free from race
conditions?” we must have access to the specification of p.

Race conditions

• For Java programs, we have SC for programs without data races

• Reasoning principle in more detail:
1. Assume SC and make sure that there are no data races

2. If no data races, we can assume SC when reasoning about race conditions

• What about the semantics of programs with data races?

• Will not be considered here
• In e.g. C++ data races result in undefined behavior (see C++ specification or

https://en.cppreference.com/w/cpp/language/memory_model)

• Java is supposed to be a ”safe language”, some guarantees

SC for data-race-free programs, again

Programming in the JMM
As an example of a weak memory model

N. Piterman 30Principles of Concurrent Programming

• I.e: How does “weak memory models” affect my daily life as a programmer?

• Answer: You must “annotate” your program more than with SC
• Sprinkle additional synchronization information on top of your program

• Variable qualifiers, synchronization mechanisms (e.g. locks), etc.

• Exactly what “annotate” means depends on language

• Essentially, you annotate which data/actions are shared and which are not

What does all this mean in practice?

• Race condition = even if we had a specification, we
have a data race so our reasoning principle does
not apply!

• Race condition = depends on the specification we
are to satisfy (what it means for the program to be
correct)

Simpler example: only one variable!
bool done = false;

t1 {

done = true;

}

t2 {

if (done) print(33);

}

• Does this program contain

• data races?

• race conditions?

• Data race = yes, done is accessed without
synchronization and one of the accesses is a
write

• There is a problem with this
program!

• From SC perspective, everything is
fine!

• No atomicity problems … but
visibility problems!

Simple example (fixed)
volatile done = false;

t1 {

done = true;

}

t2 {

if (done) print(33);

}

• Solution: Annotate your program. E.g., in Java
volatile is considered synchronization.

• Does this program contain

• data races?

• race conditions?

• Data race = no, in Java volatileaccesses are
considered synchronized

• Race condition = still depends on specification
• Example spec: “If the program outputs something, it

must output 33”.
• Race condition = no, for the above specification the

correct output does not depend on specific
execution/interleaving.

• Example spec: “The program outputs 33”.
• Race condition = yes, some interleavings give us the

correct output, others do not.

Similar example, with locks
lock lock = new lock();

int id = 0;

t1 {

lock.lock();

id++;

lock.unlock();

}

t2 {

print(id);

}

Data races?
We have a race! All accesses to the
shared variable done must be
synchronized!

Here we have (again) atomicity, but
not visibility

id might exist as multiple copies…
lock lock = new lock();

int id = 0;

t1 {

lock.lock();

id++;

lock.unlock();

}

t2 {

print(id);

}
Shared global memory

resources

CPUCPU

Local cache Local cacheid =
1

id = 0

id =
1

id = 1

Might read “stale”

value

Similar example, with locks (fixed)
lock lock = new lock();

int id = 0;

t1 {

lock.lock();

id++;

lock.unlock();

}

t2 {

lock.lock(); // new

print(id);

lock.unlock(); // new

}

This is how the program would look like
with proper annotations/synchronization

Now there are no data races.

JMM in More Detail

N. Piterman 39Principles of Concurrent Programming

Or memory

consistency model

From the Java language specification (v. 15):

Two accesses to (reads of or writes to) the same variable are said to be conflicting if at
least one of the accesses is a write.

[…]

When a program contains two conflicting accesses (§17.4.1) that are not ordered by a

happens-before relationship, it is said to contain a data race.

[…]

A program is correctly synchronized if and only if all sequentially consistent executions
are free of data races.

[…]

If a program is correctly synchronized, then all executions of the program will appear
to be sequentially consistent (§17.4.3).

Data races defined in terms of happens-before

N. Piterman 42Principles of Concurrent Programming

Happens-before example
static int x = 1;

x = 2;

Thread t = new Thread(() ->

System.out.println(x));

x = 3;

t.start();

• Data race because t reads x without
synchronization?

• (Could argue read and write not
overlapping in any SC execution.)

• x write happens-before x read,
because happens-before transitive

Demo OutOfOrderTest.java again

Reading suggestions

• See Java Concurrency in Practice (2006) if you want
more of this. The book presents simplified rules you can
follow to do concurrent programming in Java instead of
having to learn the details of the Java memory model.

•E.g., the book provides useful “safe publication
idioms”

• Also e.g.: Hans-J. Boehm, “Threads cannot be
implemented as a library” (2005).
(https://doi.org/10.1145/1065010.1065042)

• Also e.g.: Hans-J. Boehm and Sarita V. Adve, “You

models” (2012).
don’t know jack about shared variables or memory

(https://doi.org/10.1145/2076450.2076465)

Advice from JCP, p. 16

• Don’t share the state variable across threads;

• Make the state variable immutable; or

• Use synchronization whenever accessing the state variable.

• If multiple threads access the same mutable state variable without
appropriate synchronization, your program is broken. There are three ways to
fix it:

• Don’t underestimate
• the two first

alternatives!

Make sure to not have data races in your Java programs

One way to think about all of this: Atomicity and visibility

Visibility aspect new in weak memory models compared to SC!

Summary?

	Slide 1
	Slide 2: Telling the truth
	Slide 3: Telling the truth
	Slide 4: Telling the truth
	Slide 5: Lesson’s menu
	Slide 6: What are memory models?
	Slide 7: Memory Models
	Slide 8: Reading variables: Sequential programming
	Slide 9: Reading variables: Concurrent programming
	Slide 10: Reading variables: Concurrent programming
	Slide 11: Reading variables: Concurrent programming
	Slide 12: Let’s see what Java says …
	Slide 13: Reading variables: Sequential consistency (SC)
	Slide 14: Take home message 1
	Slide 15: Why weak-memory models?
	Slide 16: SC problem 1: Compiler optimizations
	Slide 17: SC problem 1: Compiler optimizations
	Slide 18: SC cost 2: Causes too much cache synchronization
	Slide 19: SC cost 2: Causes too much cache
	Slide 20: SC cost 2: Causes too much cache
	Slide 21: Why not SC?
	Slide 22: Something about JMM
	Slide 23: More context: machine details
	Slide 24: The Java memory model
	Slide 25: SC for data-race-free programs
	Slide 26: Data races: slight (Java) variation
	Slide 27: Definition of data race surprisingly subtle
	Slide 28: Race conditions
	Slide 29: SC for data-race-free programs, again
	Slide 30: Programming in the JMM
	Slide 31: What does all this mean in practice?
	Slide 32: Simpler example: only one variable!
	Slide 33: Simpler example: only one variable!
	Slide 34: Simple example (fixed)
	Slide 35: Similar example, with locks
	Slide 36: id might exist as multiple copies…
	Slide 37: id might exist as multiple copies…
	Slide 38: Similar example, with locks (fixed)
	Slide 39: JMM in More Detail
	Slide 40
	Slide 41
	Slide 42: Data races defined in terms of happens-before
	Slide 43: Happens-before example
	Slide 44
	Slide 45: Demo OutOfOrderTest.java again
	Slide 46: Reading suggestions
	Slide 47: Advice from JCP, p. 16
	Slide 48: Summary?
	Slide 49: If you only will remember one thing:

