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Telling the truth

* Why synchronization?
* Atomicity!
* Visibility!
* We have used modelling languages and pseudo-code.

e Real languages (e.g., Java) have additional issues:
* Memory model —how threads interact through memory and share data.
* In this lecture:

* Rudiments of the Java Memory Model and how to program in it.
* Principles applying to concurrent programming in other languages.
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Instruction execution order

When we designed and analyzed concurrent algorithms, we implicitly assumed that threads
execute instructions in textual program order

This is not guaranteed by the Java language — or, for that matter, by most programming
languages — when threads access shared fields

(Read “The silently shifting semicolon” http://drops.dagstuhl.de/opus/volltexte/2015/5025/ for a nice
description of the problems)

* Compilers may reorder instructions based on static
analysis, which does not know about threads.

* Processors may delay the effect of writes to when the
cache is committed to memory

This adds to the complications of writing low-level concurrent
software correctly
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Lesson’s menu

* What are memory models?

* Why weak memory models?
* Something about the Java Memory Model (as an example of a weak memory
model)

* Programming in the JMM



ST,
"53}3 UNIVERSITY OF GOTHENBURG

What are memory models?
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Memory Models

* As part of language semantics:
 How threads communicate through shared memory.
 What values are variable reads allowed to return?

* There are different memory models:

e Sequential Consistency —one of the “strongest” memory models. Often assumed for
pseudocode (and up to now in this course).

e Java uses Java Memory Model (JMM) —a weak memory model.
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Reading variables: Sequentialnbrogramming

int x = 0;

1nt Y = 0 ] What value will this read of y return?
X = 1°- Obviously 1! We always get the latest value!
- y

y = 1;
print(Cy)s
print(x);
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bool done = false; int res = 0;

green_thread {

1 res = 666;
B _ What are the possible outcomes of running?
2 done = true ’ Let’s consider all possible interleavings.
3}
blue_thread {
1 1f (done)
2 print(res);
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Reading variables: Concurrent p}ogramming

bool done = false; 1:1:2; No ouEnt

.i nt r.es — O; (x)= Variables 57 ®g Breakpoints €% Expressions gl e v = 5
res 6606

green_thread { T p—

1 res = 6606;
2 done — t rue ; (x)= Variables i %@ Breakpoints &Y Expressions gEE ¥ = 0
3} res

done true

1;1;2; No output

blue_thread { Iezzilg e Output 666
1 -i -F (done) (x)=Variables 5% 9 Breakpoints 6% Expressions olEe v = o
. res 0006
2 print(res);

done true
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Let’s see what Java says ...
Demo OutOfOrderTest.java
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Reading variables: Sequential consisteny (SC)

Some visibility guarantees in SC:
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* "Program order” always maintained
* In particular, » = 666 always before done= true in any interleaving

* No “stale” values: Always see the latest value written to any

variable
But the above guarantees not provided by all weak memory bool done = false;
models (eg JMM)I int res = 0;
Interleaving-based semantics is the “obvious” semantics. green-thread |
Why make things more difficult? Why give up program order? JenE = T
Because : }
blue_thread {
if (done)
print(res);
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Take home message 1

You must understand the memory model in order to write correct programs.
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Why weak-memory models?
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SC problem 1: Compiler optirﬁizations

For some compiler optimizations we want to reorder writes to variables.

g
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This does not happen in pseudocode ...
Messy details ...
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SC problem 1: Compiler optimizations

e E.g., the transformation to the right
“semantics preserving” in sequential
setting if we only consider final state of
program

* Not equivalent if we can inspect
program under execution, which we/can
if X andy are shared variables i
concurrent setting

* Breaks illusion of “program order”!

Write order swapped

Original program:

X

y
Z

X +Y,

Transformed program:

y
X

Z
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SC cost 2: Causes too much cache synchronization

Cost of SC not obvious with too simplified machine models:

Shared global memory




Slightly more realistic model of today’s comput

In modern CPUs,
even a single
CPU may
execute out of
order and in
parallel ...

Large (but slow)
shared memory

N

Local cache
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SC cost 2: Causes too much cache

Local cache Local cache

Shared global memory
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Want to keep
computations local
(avoid
communication
overhead)

Small and fast

i In rea_l
machines:
Multiple
layers of
cache!
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Why not SC?

* Examples:
e Out of order execution
* Compiler optimizations
e Avoid communication

* SC too expensive in many situations

* Solution to mentioned problems:
Relax some guarantees offered by SC =2 we get weak memory models

Weaker memory models (potentially) more performant, but more difficult to
program in
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Something about JMM

Example of a weak memory model
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More context: machine details

Program in Java
memory model

Java protects us S
from assembly Java compiler

language and from developers

the machlnedS | implement Java
memory modei. memory model in
the memory model

of the underlying
machine (different
machines have

different memory
models)

Programmer

Machine
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The Java memory model

* Less convenient than SC, but implementable on modern machine
architectures without too much performance loss

* There is no “right design”:

Even weaker memory models

Java memory model

Difficult to use =2

Sequential consistency

Performance =2
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SC for data-race-free programs

* A few languages have converged to “sequential consistency for data-race-free
programs” memory models

* Java included in this family

* Reasoning principle: If there are no data races (under SC), we can assume
SC when reasoning about our program

* Important to remember definitions of data race and race conditions
() SHaLMERS @) uvirsiy oF GoTHENBURG (©) SHAMERS @) uriversiry or GorHENBURG

Data races Race conditions

Concurrent programs are nondeterministic:

* Executing multiple times the same concurrent program with the same inputs may lead
to different execution traces

= A result of the nondeterministic interleaving of each thread’s trace to determine the
overall program trace

* In turn, the interleaving is a result of the scheduler’s decisions

Race conditions are typically caused by a lack of synchronization between
threads that access shared memory

A data race occurs when two concurrent threads:
* Access a shared memory location
* At least one access is a write

* The threads use no explicit synchronization mechanism to protect the
shared data

A race condition is a situation where the correctness of a

concurrent program depends on the specific execution

The concurrent counter example has a race condition:
* in some executions the final value of counter is 2 (correct)
* in some executions the final value of counteris 1 (wrong)

Race conditions can greatly complicate debugging!
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Data races: slight (Java) variation
Def.
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Two memory accesses are in a data race iff they access the same memory
location simultaneously (they are interleaved next to each other), at least one
access is a write, insufficient explicit synchronization used to protect the

accesses
Def.

A program is data-race-free iff no SC execution of the program contains a data

race
Notes:

* We quantify over all SC executions in the second

e Data-race-freedom is a “language-level” property!

: j UNIVERSITY OF GOTHENBURG

Data races

Race conditions are typically caused by a lack of synchronization between
threads that access shared memory
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A data race occurs when two concurrent threads:
* Access a shared memory location
* At least one access is a write
shared data

* The threads use no explicit synchronization mechanism to protect the

|
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Does this program contain any data races?

bool x = false, y = false;

tl {

1f (X) y = true;
}
t2 {

1f (y) x = true;
}
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Race conditions
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Race conditions

Concurrent programs are nondeterministic:

* Executing multiple times the same concurrent program with the same inputs may lead
to different execution traces

* A result of the nondeterministic interleaving of each thread’s trace to determine the
overall program trace

* In turn, the interleaving is a result of the scheduler’s decisions

A race condition is a situation where the correctness of a
concurrent program depends on the specific execution

The concurrent counter example has a race condition:
* in some executions the final value of counter is 2 (correct)
* in some executions the final value of counteris 1 (wrong)

Race conditions can greatly complicate debugging!

I”

Note that this is an “application-level” property!

|.e., for a given program p, to answer the question “is p free from race
conditions?” we must have access to the specification of p.
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SC for data-race-free progra ms again

 For Java programs, we have SC for programs without data races

' UNIVERSITY OF GOTHENBURG

* Reasoning principle in more detail:
1. Assume SC and make sure that there are no data races
2. If no data races, we can assume SC when reasoning about race conditions

 What about the semantics of programs with data races?

e Will not be considered here

* In e.g. C++ data races result in undefined behavior (see C++ specification or
https://en.cppreference.com/w/cpp/language/memory model)

* Javais supposed to be a “safe language”, some guarantees
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Programming in the JMM

As an example of a weak memory model
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What does all this mean in préctice?

* |.e: How does “weak memory models” affect my daily life as a programmer?

* Answer: You must “ ” your program more than with SC
* Sprinkle additional synchronization information on top of your program
 Variable qualifiers, synchronization mechanisms (e.g. locks), etc.

e Exactly what “annotate” means

* Essentially, you annotate which data/actions are shared and which are not
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Simpler example: only one variable!

bool done = false;

Does this program contain
e data races?
* race conditions?

tl : .
{ * Datarace = yes, done is accessed without

done = true; synchronization and one of the accesses is a

} write
* Race condition = depends on the specification we
are to satisfy (what it means for the program to be

t2 { correct)

if (done) print(33); * Race condition = even if we had a specification, we
) have a data race so our reasoning principle does

not apply!
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Simple example (fixed)

done = false; * Solution: Annotate your program. E.g., in Java
volatiTle is considered synchronization.

* Does this program contain

tl { e data races?
done = true; * race conditions?
} * Datarace = no, in Java volatileaccesses are

considered synchronized
* Race condition = still depends on specification

t2 { * Example spec: “If the program outputs something, it
_ _ must output 33”.
if (done) print(33); * Race condition = no, for the above specification the
} correct output does not depend on specific

execution/interleaving.

 Example spec: “The program outputs 33”.

e Race condition = yes, some interleavings give us the
correct output, others do not.
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Similar example, with locks

lock lock = new lock(); Data races?
int 1d = 0; We have a race! All accesses to the
shared variable done must be
tl { synchronized!
Tock.Tock(); Here we have (again) atomicity, but
Sl not visibility
lTock.unlock();
}
t2 {
print(1d);
}
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1d might exist as multiple copies...

lock Tock = new lock(); Might read “stale”
int id = 0; value
tl {

lTock.Tock(); cPU

Td++;

lock.unTock(;
}

print(1d);

}

Shared global memory id =1
1




Similar example,
Tock lock = new lock();

int id = 0;

tl {
Tock.lock();
1d++;
Tock.unlock();
¥

t2 {
lTock.lock(); // new

print(id);
lTock.unlock(); // new
}

i) CHALMERS {3_5 UNIVERSITY OF GOTHENBURG

with locks (fixed)

This is how the program would look like
with proper annotations/synchronization

Now there are no data races.
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JMM in More Detall
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Module java.base

Package java.util.concurrent

Utility classes commonly useful in concurrent programming. This package includes a few small standardized extensible frameworks, as well as some
classes that provide useful functionality and are otherwise tedious or difficult to implement. Here are brief descriptions of the main components. See

also the java.util.concurrent.locks and java.util.concurrent.atomic packages.

Executors

Interfaces. Executor is a simple standardized interface for defining custom thread-like subsystems, including thread pools, asynchronous I/O, and
lightweight task frameworks. Depending on which concrete Executor class is being used, tasks may execute in a newly created thread, an existing
task-execution thread, or the thread calling execute, and may execute sequentially or concurrently. ExecutorService provides a more complete
asynchronous task execution framework. An ExecutorService manages queuing and scheduling of tasks, and allows controlled shutdown. The
ScheduledExecutorService subinterface and associated interfaces add support for delayed and periodic task execution. ExecutorServices provide
methods arranging asynchronous execution of any function expressed as Callable, the result-bearing analog of Runnable. A Future returns the
results of a function, allows determination of whether execution has completed, and provides a means to cancel execution. A RunnableFutureis a
Future that possesses a run method that upon execution, sets its results.

Implementations. Classes ThreadPoolExecutor and ScheduledThreadPoolExecutor provide tunable, flexible thread pools. The Executors class
provides factory methods for the most common kinds and configurations of Executors, as well as a few utility methods for using them. Other utilities
based on Executors include the concrete class FutureTask providing a common extensible implementation of Futures, and
ExecutorCompletionService, that assists in coordinating the processing of groups of asynchronous tasks.

Class ForkJoinPool provides an Executor primarily designed for processing instances of ForkJoinTask and its subclasses. These classes employ a
work-stealing scheduler that attains high throughput for tasks conforming to restrictions that often hold in computation-intensive parallel
processing.

Queues
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. thegr are guaranteed to traverse elements as they existed upon construction exactly once, and may (but are not guaranteed to) reflect any
modifications subsequent to construction.

Or memory
nsistc;glg dmodel

Chapter 17 of The Java Language Specification defines the happens-before relation on memory operations such as reads glg writes o

variables. The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the
read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread. join() methods, can form happens-before
relationships. In particular:

Memory Consistency Properties «—

e Each action in a thread happens-before every action in that thread that comes later in the program's order.

e An unlock (synchronized block or method exit) of a monitor happens-before every subsequent lock (synchronized block or method entry) of
that same monitor. And because the happens-before relation is transitive, all actions of a thread prior to unlocking happen-before all actions
subsequent to any thread locking that monitor.

e A write to a volatile field happens-before every subsequent read of that same field. Writes and reads of volatile fields have similar memory
consistency effects as entering and exiting monitors, but do not entail mutual exclusion locking.

e A call to start on a thread happens-before any action in the started thread.

e All actions in a thread happen-before any other thread successfully returns from a join on that thread.

The methods of all classes in java.util.concurrent and its subpackages extend these guarantees to higher-level synchronization. In particular:

e Actions in a thread prior to placing an object into any concurrent collection happen-before actions subsequent to the access or removal of that
element from the collection in another thread.

e Actions in a thread prior to the submission of a Runnable to an Executor happen-before its execution begins. Similarly for Callables submitted
to an ExecutorService.

e Actions taken by the asynchronous computation represented by a Future happen-before actions subsequent to the retrieval of the result via
Future.get() in another thread.

o Actions prior to "releasing” synchronizer methods such as Lock.unlock, Semaphore. release, and CountDownLatch. countDown happen-before
actions subsequent to a successful "acquiring" method such as Lock. lock, Semaphore.acquire, Condition.await, and CountDownLatch.await
on the same synchronizer object in another thread.

e For each pair of threads that successfully exchange objects via an Exchanger, actions prior to the exchange() in each thread happen-before
those subsequent to the corresponding exchange() in another thread.

e Actions prior to calling CyclicBarrier.await and Phaser.awaitAdvance (as well as its variants) happen-before actions performed by the
barrier action, and actions performed by the barrier action happen-before actions subsequent to a successful return from the corresponding
await in other threads.
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Data races defined in terms of héppens—before

From the Java language specification (v. 15):

Two accesses to (reads of or writes to) the same variable are said to be conflicting if at
least one of the accesses is a write.

[...]

When a program contains two conflicting accesses (§17.4.1) that are not ordered by a
happens-before relationship, it is said to contain a data race.

[...]

A program is correctly synchronized if and only if all sequentially consistent executions
are free of data races.

[...]

If a program is correctly synchronized, then all executions of the program will appear
to be sequentially consistent (§17.4.3).

UNIVERSITY OF GOTHENBURG
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appens-before example

static int x = 1; * Data race because t reads x without
X = 2; synchronization?

Thread t = new Thread(() ->

(‘* System.out.println(x)); ,

¥ _ 3. * (Could argue read and write not
f.start(): overlapping in any SC execution.)

* X Write happens-before x read,
because happens-before transitive
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. thegr are guaranteed to traverse elements as they existed upon construction exactly once, and may (but are not guaranteed to) reflect any
modifications subsequent to construction.

Memory Consistency Properties

Chapter 17 of The Java Language Specification defines the happens-before relation on memory operations such as reads and writes of shared
variables. The results of a write by one thread are guaranteed to be visible to a read by another thread only if the write operation happens-before the
read operation. The synchronized and volatile constructs, as well as the Thread.start() and Thread. join () methods, can form happens-before
relationships. In particular:

e==PFach action in a thread happens-before every action in that thread that comes later in the program's order.

e An unlock (synchronized block or method exit) of a monitor happens-before every subsequent lock (synchronized block or method entry) of
that same monitor. And because the happens-before relation is transitive, all actions of a thread prior to unlocking happen-before all actions
subsequent to any thread locking that monitor.

write to a volatile field happens-before every subsequent read of that same field. Writes and reads of volatile fields have similar memory
consistency effects as entering and exiting monitors, but do not entail mutual exclusion locking.

e A call to start on a thread happens-before any action in the started thread.

e All actions in a thread happen-before any other thread successfully returns from a join on that thread.

The methods of all classes in java.util.concurrent and its subpackages extend these guarantees to higher-level synchronization. In particular:

e Actions in a thread prior to placing an object into any concurrent collection happen-before actions subsequent to the access or removal of that
element from the collection in another thread.

e Actions in a thread prior to the submission of a Runnable to an Executor happen-before its execution begins. Similarly for Callables submitted
to an ExecutorService.

e Actions taken by the asynchronous computation represented by a Future happen-before actions subsequent to the retrieval of the result via
Future.get() in another thread.

o Actions prior to "releasing” synchronizer methods such as Lock.unlock, Semaphore. release, and CountDownLatch. countDown happen-before
actions subsequent to a successful "acquiring" method such as Lock. lock, Semaphore.acquire, Condition.await, and CountDownLatch.await
on the same synchronizer object in another thread.

e For each pair of threads that successfully exchange objects via an Exchanger, actions prior to the exchange() in each thread happen-before
those subsequent to the corresponding exchange() in another thread.

—’Actions prior to calling CyclicBarrier.await and Phaser.awaitAdvance (as well as its variants) happen-before actions performed by the
barrier action, and actions performed by the barrier action happen-before actions subsequent to a successful return from the corresponding
await in other threads.

—
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Demo OutOfOrderTest.java again




BRIAN GOETZ v

WITH Tim PEIERLS, JOsHuAa BLOCH,
JOSERPH BOWEBEER, DAVID HOLMES,
AND DOUG LEA

-} CHALMERS é’;_sj UNIVERSITY OF GOTHENBURG

Readlng'suggestlons

e See Java Concurrency in Practice (2006) if you want
more of this. The book presents simplified rules you can

follow to do concurrent pro%rammmg in Java instead of
having to learn the details of the Java memory model.

*E.g., the book provides useful “safe publication
idioms”

* Also e.g.: Hans-J. Boehm, “Threads cannot be
imp lemented as a library” (2005)
(https //doi.org/10.1145/1065010.1065042)

Also e.g.: Hans-J. Boehm and Sarita V. Adve, “You
don’st know jack about s area vaﬁab?es or mémory

odels” (2012)
ttps: //(gm org/lO 1145/2076450.2076465)




J&}; UNIVERSITY OF GOTHENBURG

Advice from JCP, p. 16

* If multiple threads access the same mutable state variable without
appropriate synchronization, your program is broken. There are three ways to
fix it:

e the two first

* Don’t share the state variable across threads; L
 Make the state variable immutable; or

e Use synchronization whenever accessing the state variable.
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Ssummary?

Make sure to not have data races in your Java programs

One way to think about all of this: Atomicity and visibility

Visibility aspect new in weak memory models compared to SC!
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